北京师范大学统计学院
微信  |   微博  |   旧版  |  ENGLISH
您的当前位置: 首页 » 学术科研 » 学术动态
【预告】统计学院系列学术报告(2016年第13期) 发布时间:2016-12-16 浏览次数:

报告时间:20161216日(周五)上午8:30

报告地点: 京师学堂第七会议室

人: 崔欣萍,美国加州大学河滨分校统计系正教授、系主任

报告题目:Sequential Multiple Testing for Variable Selection in High Dimension-al Linear Models

报告摘要:Covariance test (Lockhart et al. 2014) provided p-values for all variables that enter into a linear model sequentially along a lasso solution path. Using these p-values to select a model with inferential guarantees is equivalent to multiple hypothesis testing setting where the hypotheses are ordered. In this paper, we proposed a sequential multiple hypothesis testing framework, which considers multiple testing within each step and across all steps along the lasso solution path. Under this framework, we designed stepwise p-values and applied Benjamini-Liu (BL, 1999) step down procedure. We compare it with the Single Step-Down method and ForwardStop and StrongStop procedures. Simulation studies show that our proposed procedure has higher power with FDR controlled at the desired level, especially for large scale and high-dimensional data. Diabetes study and framingham heart study examples are also presented.




北京师范大学统计学院
 联系我们  |   友情链接   |  下设机构   |  人才招聘   |  网站地图 
Copyright 2014 北京师范大学统计学院 地址:北京市新街口外大街19号 邮编:100875