报告题目:大数据、人工智能与金融创新
主讲人:范剑青,教授
范剑青(Jianqing Fan),现为美国普林斯顿大学Frederick L. More金融学讲座教授与系主任,复旦大学大数据学院教授、院长,曾任香港中文大学统计系主任。2000年荣获COPSS总统奖(国际统计学领域最高奖项),2006年荣获洪堡基金会终身成就奖,2007年荣获晨兴华人数学家大会应用数学金奖(华人应用数学界最高奖),2008 年获泛华统计学会杰出成就奖,2009年荣获在美国文理与艺术界著名的GUGGENHEIM Fellow,2013年获泛华统计学会(International Chinese Association)“许宝禄奖”,2014年荣获英国皇家统计学会授予的“Guy Medal”银质奖章,2018年荣获诺特资深学者奖(Noether Senior Scholar Award)。现为国际统计学会(International Statistical Institute)会士、国际数理统计学会(Institute of Mathematical Statistics)会士、美国统计学会(American Statistical Association)会士、美国科学促进会(American Association for the Advancement of Science)会士、计量金融学会(The Society for Financial Econometrics)会士。主要研究领域为高维统计、机器学习、大数据科学、经济学、金融学、生物信息等。学术成果发表在Annals of Statistics,Journal of American Statistical Association,Econometrica, Journal of Econometrics,Journal of Financial Economics等国际一流期刊上。目前为国际一流期刊Journal of Econometrics的联合主编,Journal of American Statistical Association的副主编。
报告摘要:
This talk first gives an overview on the genesis of machine learning and AI and how statistical and computational methods have evolved with growing dimensionality andsample sizes and become the foundation of modern machine learning and AI. It will also outline how ideas of trading modeling biases and variances have been developed into high-dimensional statistics and machine learning, with focus on deep learning models. We will outline the opportunities and challenges of statistical machine learning in financial applications. We will showcase the applications to predicting bond risk premia using macroeconomic time series, portfolio choices, and high-frequency finance.
报告时间:2019年11月1日(周五)16:00-17:00
报告地点:第四教学楼101教室