亓颢博,男。2023年毕业于北京大学光华管理学院,获经济学博士学位,现为北京师范大学统计学院数理统计系师资博士后。研究方向为统计优化、大规模数据统计分析、网络数据分析与深度学习中的统计理论。在 Journal of Computational and Graphical Statistics、Neurocomputing、Computational Statistics & Data Analysis 等期刊发表多篇论文。
一、教育背景和工作经历
2023.7 — 至今 北京师范大学统计学院,师资博士后(合作导师:郭旭教授)
2019.9 — 2023.7 北京大学光华管理学院,经济学博士(导师:王汉生教授)
2015.9 — 2019.7 北京师范大学统计学院,理学学士
二、联系方式:
工作单位:北京师范大学统计学院
通讯地址:北京市海淀区新街口外大街19号;邮编100875.
电子邮箱:haobo4869@bnu.edu.cn
三、学术成果
[1] Li, Y., Qi, H.*, and Wang, H. (2024). A Note about Why Deep Learning is Deep: A Discontinuous Approximation Perspective, Stat, 13(1), e654.
[2] Qi, H., Zhu, X.*, and Wang, H. (2024). A random projection method for large-scale community detection, Statistical and Its Interface, 17(2), 159-172.
[3] Qi, H., Wang, F.*, and Wang, H. (2023). Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator, Journal of Computational and Graphical Statistics, 32(4), 1348-1360.
[4] Qi, H., Cao, J., Chen, S., and Zhou, J.* (2023). Compressing Recurrent Neural Network Models through Principal Component Analysis, Statistical and Its Interface, 16(3), 397-407.
[5] Qi, H., Zhou, J.*, and Wang, H. (2022). A Note on Factor Normalization for Deep Neural Network Models, Scientific Reports, 12, 5909.
[6] Zhou, J., Qi, H.*, Chen, Y., and Wang, H. (2021). Progressive Principle Component Analysis for Compressing Deep Convolutional Neural Networks, Neurocomputing, 440, 197-206.
[7] Gao, Y., Zhu, X.*, Qi, H., Li, G., Zhang, R., and Wang, H. (2023). An Asymptotic Analysis of Random Partition Based Minibatch Momentum Methods for Linear Regression Models, Journal of Computational and Graphical Statistics, 32(3), 1083-1096.
[8] Wang, F., Zhu, Y., Huang, D.*, Qi, H., and Wang, H. (2021). Distributed One-step Upgraded Estimation for Non-uniformly and Non-randomly Distributed Data, Computational Statistics & Data Analysis, 162, 107265.
四、开设课程
本科生:《深度学习》、《数理统计(上机)》